Kähler Surfaces And

نویسنده

  • MICHAEL SINGER
چکیده

A complex ruled surface admits an iterated blow-up encoded by a parabolic structure with rational weights. Under a condition of parabolic stability, one can construct a Kähler metric of constant scalar curvature on the blow-up according to [18]. We present a generalization of this construction to the case of parabolically polystable ruled surfaces. Thus we can produce numerous examples of Kähler surfaces of constant scalar curvature with circle or toric symmetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 09 Kähler Ricci Flow on Fano Surfaces ( I )

We show the properties of the blowup limits of Kähler Ricci flow solutions on Fano surfaces if Riemannian curvature is unbounded. As an application, on every toric Fano surface, we prove that Kähler Ricci flow converges to a Kähler Ricci soliton metric if the initial metric has toric symmetry. Therefore we give a new Ricci flow proof of existence of Kähler Ricci soliton metrics on toric surfaces.

متن کامل

N = 2 Topological Yang - Mills Theory on Compact Kähler Surfaces

We study a topological Yang-Mills theory with N = 2 fermionic symmetry. Our formalism is a field theoretical interpretation of the Donaldson polynomial invariants on compact Kähler surfaces. We also study an analogous theory on compact oriented Riemann surfaces and briefly discuss a possible application of the Witten's non-Abelian localization formula to the problems in the case of compact Kähl...

متن کامل

Kähler Metrics of Constant Scalar Curvature on Hirzebruch Surfaces

It is shown that a Hirzebruch surface admits a Kähler metric (possibly indefinite) of constant scalar curvature if and only if its degree equals zero. There have been many extensive studies for positive-definite Kähler metrics of constant scalar curvature, especially, Kähler Einstein metrics and scalar-flat Kähler metrics, on existence, uniqueness, obstructions, and relationships with other not...

متن کامل

Ricci flow on Fano surfaces ( I )

We show the convergence of Kähler Ricci flow on toric Fano surfaces staring from any Kähler metric in the canonical class.

متن کامل

The Kähler-ricci Flowon Kähler Surfaces

The problem of finding Kähler-Einstein metrics on a compact Kähler manifold has been the subject of intense study over the last few decades. In his solution to Calabi’s conjecture, Yau [Ya1] proved the existence of a Kähler-Einstein metric on compact Kähler manifolds with vanishing or negative first Chern class. An alternative proof of Yau’s theorem is given by Cao [Ca] using the Kähler-Ricci f...

متن کامل

Twistor Spaces and Balanced Metrics on Complex Manifolds Complex manifolds of complex dimension

Complex manifolds of complex dimension 1 (Riemann surfaces) are of course always Kähler, that is admit Kähler metrics, on account of the obvious dimension situation: dω=0 simply because it is a 3-form! This dimensional necessity naturally does not apply in complex dimension 2 or higher, but as it happens, most compact complex surfaces in fact are Kähler. Moreover, the non-Kähler examples occurr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007